

ET-WST synergy for next generation gravitational wave multi-messenger observations

Sofia Bisero

Supervisor: Susanna Vergani

LUX, Observatoire de Paris

Image: Yuri Beletsk

Next generation gravitational wave interferometers: the Einstein Telescope

In the **ESFRI** RoadMap

Late 2030s

Possibility of monitoring BNS before merger

Sensitivity reaching kHz frequencies: the **post-merger** signal will be accessible

Challenges in the research of the EM counterpart of next generation GW detections

Faint optical-NIR EM counterparts to be found within large error regions among a huge number of contaminants

Large field of views and high sensitivities will be necessary for the EM follow-up

Photometric observations with facilities like the Vera C. Rubin Observatory, that will scan the sky with high cadence and unprecedented sensitivities, will provide a lot of counterpart candidates

Spectroscopy: the bottleneck of next generation GW-MM science

The spectrum of **AT2017gfo**: important for the study of the physics of the phenomenon, the environment, heavy elements nucleosynthesis and for the KN identification

Huge amount of transients in the GW error region

EM counterpart

gather the spectroscopic data required for their identification

The acquisition of multiple spectra at the same time can play a key role in identifying and characterising EM counterparts

Integral Field and Multi-Object Spectroscopy

IFS

A spectrum for each pixel of the 2D field image

Fibres positioned on the localisation of the sources of interest

IFS and MOS with the Wide-field Spectroscopic Telescope

- To be realised in the 2030/40s

- 10m primary mirror
- Large field of view and high multiplexing
- Simultaneous IFU and MOS

Development of the observing strategy

within the WST Time Domain Working Group and the Division 4 (Multimessenger Observations) of the ET OSB

Credits: WST White Paper

Stand-alone scenario

Galaxy targeted search with IFS and MOS within the GW signal error region

Synergy with optical-NIR photometric observations IFS and MOS used to target the counterpart candidates found by optical-NIR surveys (Vera Rubin)

How many galaxies will be found in the "comoving error volume" of ET BNS?

What are the properties of ET BNS EM counterparts that are detectable with WST?

Analyse how the results depend on the intrinsic properties of NS

NSs equation of state: APR4 and BLh

NSs mass distribution: gaussian and uniform

Detectability and characterisations of ET BNS counterparts with WST

Analyse how the results depend on the observable properties of the BNS population

redshift
sky localisation
viewing angle
magnitude

Simulations

Percentage of detectable KN at different times post-merger

ACME workshop - April 8th, 2025

BLh gaussian

KN theoretical models

Simulations

Bisero et al. 2025 in prep

White: ET+CE BNS detections in 10 years of operations Grey: Vera Rubin Observatory KN detections

Colored: WST KN detections

Colored: Sources where the afterglow outshines the KN among WST detections with the IFS red arm

Simulations

Vera Rubin Observatory detections SNR > 3, detectable:75.94%

SNR > 5, detectable: 58.77%

 $\mathrm{SNR} > 10,$ detectable:31.4%

0.5

0.4

ET+CE

Bisero et al. 2025 in prep

0.0

0.1

0.2

0.3

redshift

 10^{-1}

White: ET (+ CE) BNS detections in 10 years of operations

0.6

Grey: Vera Rubin Observatory KN detections

Colored: WST KN detections

Simulations

Bisero et al. 2025 in prep

GW alert: estimate of **luminosity distance** and **sky localisation**

How many **galaxies** can be found n the **comoving error volume** of each BNS?

Simulations

Comoving Error Volume

$$V_C \sim \Omega \int_{z-\delta z}^{z+\delta z} \frac{d^2 V_C}{d\Omega dz} dz$$

$$D_L - \Delta D_L \rightarrow z - \delta z$$
 $D_L + \Delta D_L \rightarrow z + \delta z$

 $\Phi(m) dm$

ET-WST synergy

Simulations

Galaxy luminosity function integrated over different magnitude intervals, then multiplied by the comoving error volume

Bisero et al. 2025 in prep

Number of galaxies in the comoving error volume

Galaxies in the BNS comoving volume

ACME workshop - April 8th, 2025

Galaxies in the BNS comoving volume

ACME workshop - April 8th, 2025

Galaxies in the BNS comoving volume

Galaxies in the BNS comoving volume

Galaxies in the BNS comoving volume

Possible issues with a galaxy-targeted strategy:

ACME workshop - April 8th, 2025

Galaxies in the BNS comoving volume

Possible issues with a galaxy-targeted strategy:

Galaxies in the BNS comoving volume

Possible issues with a galaxy-targeted strategy:

Galaxies in the BNS comoving volume

Possible issues with a galaxy-targeted strategy:

Galaxies in the BNS comoving volume

Possible issues with a galaxy-targeted strategy:

Mini-IFUs with fibres bundles would be great for handling these cases

Galaxies in the BNS comoving volume

Possible issues with a galaxy-targeted strategy:

Possible solutions:

Limit the stand alone scenario to "golden cases"

Perform spectral subtraction using previous observations of the host

Galaxies in the BNS comoving volume

Possible issues with a galaxy-targeted strategy:

Work

Possible solutions:

Limit the stand alone scenario to "golden cases"

Perform spectral subtraction using previous observations of the host

Further investigation of the **angular size** and **magnitudes** of the galaxies in the comoving error volume is ongoing, using the results from current galaxy catalogues

Galaxies in the BNS comoving volume

Alternative strategy:

Target counterpart candidates from wide-field photometric telescopes observations

(Vera Rubin Observatory) with WST fibres

Conclusions and future prospects

- IFS and MOS with WST are well suited for the identification and characterisation of EM counterparts of next generation GW detections
- WST can be used both alone and in synergy with optical-NIR photometric observations
- With WST, KN can be unveiled up to z~0.4 and AB magnitude ~25
- GRB afterglows contribution is observable for systems with small viewing angle, up to ~15°, also at high redshift

- This work can be adapted to make predictions for LVK O5, with IFS and MOS facilities available at the time of O5 operations

Conclusions and future prospects

- IFS and MOS with WST are well suited for the identification and characterisation of EM counterparts of next generation GW detections
- WST can be used both alone and in synergy with optical-NIR photometric observations
- With WST, KN can be unveiled up to z~0.4 and AB magnitude ~25
- GRB afterglows contribution is observable for systems with small viewing angle, up to ~15°, also at high redshift

Thank you!

- This work can be adapted to make predictions for **LVK O5**, with IFS and MOS facilities available at the time of O5 operations

Telescope aperture (M1)	12 m seeing limited			
Telescope FoV	3.1 deg ²			
Telescope Spec. range	0.35-1.6 μm			
Operations	MOS and IFS simultaneous operations ToO implemented at telescope and fibre level			
Modes	MOS-LR	MOS-HR	IFS	
FoV	3.1 deg ²	3.1 deg ²	3x3 arcmin ² (mosaic on 9x9 arcmin ²)	
Spectral range (simultaneous)	0.37-0.97 μm	0.37-0.97 μm 3-4 windows	0.37-0.97 μm	
Spectral resolution	4000	40000	3500	
Multiplexing	20000	2000		

WST				
channel	spectral range [Å]	best throughput range [Å]	specte size [Å]	
	IFS			
blue	3700-6100	4800-5800	0.64	
red	6000-9600	6500-7500	0.97	
	MOS			
blue	3700-5350	4800-5300	0.41	
orange	5150 - 7400	6000-7000	0.55	
red	7200-9700	7300-8300	0.61	