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What is a pre-CBD system

when you think pre-merger system often what comes to mind is:

- two black-holes with their individual accretion disk &
- a circumbinary disk e

= but this circumbinary stage represent an already advanced pre-merger stage

e ’ the earliest stage is before any circumbinary structure is formed
- Two distant black-holes with their individual accretion disk

o ______ = the slow inspiral impacts both disks and could help detect them
it is also the "initial condition” to the circumbinary stage.

in the opposite direction, the late pre-merger stage has no individual accretion disk pg

- Two close black-holes with a single, circumbinary, disk

= this mono-disk stage is typical of separation less than 20 r,

= here we only talked in dynamical timescale, as we want to observed those systems we need to
add the human timescale dimension



What is a pre-CBD system
and why does it matter
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= the lower mass binary black-holes will start in that stage and intfermediate mass system (lower than

103M®) will stay in that regime until a few days before the merger

= to identify IM-BBH electromagnetic counterpart we need to characterize pre-CBD systems



What is a pre-CBD system
and why does it matter
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= We can also search NOW for the systems that LISA could detect in ten years
and have a complete follow up of the gas behavior in all the stages of merger

= in that case, systems up to 106M® will be in the pre-CBD stage for the next few years



What is a pre-CBD system
and why does it matter
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= We can also perform archival search ahead of LISA launch and have a complete follow up for an even
larger number of systems (systems up to 1O7M® have been in the pre-CBD stage in the last 100 years)



What is a pre-CBD system

and why does it matter

if we want to perform (archival) search for the source of the

closer systems

in order to find those pre-CBD system though their
electromagnetic emission we need:

- to characterize how the secondary affect the
primary's disk

= and how does that translate into observables

gravitational wave detected by LISA

= we need to take into account that systems up to 107M® have been in the
pre-CBD stage at some point during the last 100 years and not focus only on
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e-NOVAs:
synthetic observation from fluid simulations
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Sculpting the outer disk of an AGN @
with a secondary disruptor @

a series of 2D HD
simulations for varying
binary parameters

q<{1,03,0.1,0.05,
0.01, 0.005, 0.0009}

binary separation 2000 r,,

D<{1,15,2,3,6}1073 r,, mass ratio of 1

those features are typical of the gravitational impacts of a secondary disruptor



Sculpting the outer disk of an AGN
with a secondary disruptor

The presence of a secondary black-hole leads to:

* a two-arm spiral in the primary's disk

= it could lead to some variability if the the
spiral arm are not too faint but spiral wave are

too common to help identify BBHSs
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% an elliptical shape for the outer edge of
the primary's disk

= even for e=0.6 the impact on fthe
observables is small because it is related to
a low density region

w both signals are at the secondary’s orbital frequency



Sculpting the outer disk of an AGN
with a secondary disruptor

The presence of a secondary black-hole leads to:
* a two-arm spiral in the primary's disk
% an elliptical shape for the outer edge of

the primary's disk

= both signals are at the secondary's orbital frequency

* the shrinking of the primary's disk as the outer gas is

being stripped away

Equal mass BBHs
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= at each binary separation the outer disk settles

rapidly at its new position

= the shrinking of the outer disk happen on the

merger timescale

inner Lindblad
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Sculpting the outer disk of an AGN @
\ with a secondary disruptor @

of the three effects of a secondary (spiral, ellipse, shrinking)
the most impactful one is the removal of the primary’'s outer disk

"™ the most prominent features of the primary's disk can be related to the BBH
parameters
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now we need to see how does that missing outer disk impact the SED

to see if we can use it to identify pre-CBD BBH systems
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Impact on the SED:
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= the effect is mostly in the infra-red, with an optical/UV component for the lower masses SMBH

where to look for the rout drop o
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Impact on the SED: -
where to look for the rout drop o

{ = Mi=4e7TM, rout= 1000rg IR uv
10-8- € Mi1=4e7M, rout= 300rgl
|-+ Mi=1e5M,  rout= 10001,
10710 ] 26 Mi=1ebM, rout= 300rg
+ Mi=1e3M, rout= 1000rg1
10_12; > Mi=1e3M, rout= 300rg1 . . .
| SMBH souees at 90Mpe but the shrinking happens on the merger timescale
oM
k
Z 016
g 10—18
10-20 | e 1e7MO / . | : '| 1 i i
° 1 | 2 H
1=1e6M, : ! I . 1 100vears |
10-22 4 1= 1e5M0 S z 1 I ! I | :
] 1= 194Mol : - : I ] ! i i
10724~ 1=+ M; =1e3M, : D I H | i :
| 1= My =1e2M, : - I | ! I . I
10726 inclination ‘7(‘)(‘)”” Y 30,000— ot M'l =40 I\/IO :: : | I : | -’ :
1013 1ol 1015 0% 1 i : : : ,' ! : ! '
v(Hz) -4 H I ! I ! i
© N | ! 1 ] :
S 25,000 . s I ! | . :
' s : | /] L} | -' .,
‘dg‘ [\ : - | W‘ ] : | ! ,:
: < I I
5 20,000 O . B . ! Y B
S ] ~ 2 | P~ : 1 50 I%
2 | Il .- T ! ]
) ] s : I |
2 15,000 S ; : _— ! | S
= 1 : - (I 1 Ly g
T K < [ ’ | v
] ; 9 I ! 1/ J
10,000_ .o. N I I 'l i //..
b K :‘ I ] Y / .I
: .o. ~: / l' o/I 3
4 .o. :‘ ,{ " ./ 1 Ky
5,000 /s ¢ ./ '/ 10 years
v o \\“‘ -’ - I "' -/.' .-’jl
: ......... |\““‘ —” I——“" —.’.t’-"’ |
O_‘ e00000®® 1) - __-} m!-.'l.—.-.-"l.—. : , , !
50 100 200 500 1000
Fout (rg1)

= it will be very hard to see any changes of the rout/lowering of the IR flux for high mass systems



time to merger (days)

following the outer disk in real time: @
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would be able to follow
dramatic changes in the
accretion structure!
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time to merger (days)

following the outer disk in real time:
IM-BBH and lower
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for low mass system, we can follow the
outer edge of the disk as it shrinks
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flux (erg/s/cm?)

time to merger (days)

following the outer disk in real time:
IM-BBH and lower

for low mass system, we can follow the outer edge of the disk as it shrinks

100 [stellar mass sources at 10kpc inclination 70° sources at 90Mpc inclination 70°
108 1071
3 o ;”
~10 _| \’-\bf * < -
10 +o% X ¥ X
A£35% Rl X
+ER g0 %
- E* z ¥
+ %% = A
% M1=40M, rout= 1500 b4
) ) ?3(: > -!_ M1:4OMO izzt: 800:;1 10-18 /;5 X o Mi=10°M, rou= 680ry
10~ %,_‘!_9?*, X Mi—40M, rout— 5001 /;:*’ v M=10°M, rou= 4401y
1oX K T v K Mi=40M, rout= 200rg 9% * Mi=10°M, rou= 200rg
rT “{ T i T “‘ ' ' ' T T T “{ T T T T T T TTT T T TT T T T T T T T T T T
10 105 i 107 1015 1016 1017 1018
Z
v(Hz)
E L - ,-/,/:.,10"
] o
4 AR NN RS
10 E 50 years of observations
o then we can check if the rate at
; which the outer edge disappear is
] — M] = 1e4M0 . . . . .
10 M1 =1e3M, | compatible with the inspiral time
E - M] = 162M0
] = Mi = 40Mo to merger
101_: ree= Ml - 20M0
15
3 10 years of observations
T T T T T | | T
50 200 500 1000 2000
Tout (l"gl)

= a test for IM (and lower)-BBHs in the pre-CBD stage



the necessary observable of pre-CBD system @

rout / rBH2

" e

Even if we cannot follow the movement of the shrinking rout along with the
reduction of the binary separation for most binary masses
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= the "missing outer disk” is a necessary observable for a large portion of binary parameters
and should be checked for all BBH candidate compatible with the pre-CBD stage



the necessary observable of pre-CBD system .-@

Similarly, any AGN with a "relatively small” outer disk should be check for

potential companion (or fly-by) imerLindbia
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the necessary observable of pre-CBD system .-@

Similarly, any AGN with a "relatively small” outer disk should be check for
pOTenTiGI Companion (Or‘ fly-bY) ] mass ratio and position of the secondary disrupter for a given rout
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from that we can get the binary period that
should modulates the flux (from the spiral
and ellipsoid)

= this can help the search for a potential
companion and identify new BBH candidate
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= this show the strength of this necessary observable to not
only validate BBH candidate but also search for new one



Conclusions: Exploring the detectability of
pre-circumbinary disk systems

if we want to perform (archival) search
ahead of LISA launch in order to have a
complete follow up of the gas behavior in all
the stages of merger for a large number of
systems

= we need to take into account that systems up

to 107M® have been in the pre-CBD stage at
some point during the last 100 years

of the three effects of a secondary (spiral, ellipse, shrinking) the most impactful one is the removal
of the primary's outer disk

= this "missing outer disk" is a hecessary observable for a large portion of binary parameters
and should be checked for all BBH candidate compatible with the pre-CBD stage



