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Electromagnetic counterpart to binary black hole merger

o Binary black holes and their coalescence
• Galaxy + black hole growth

• Cosmology: Hubble constant

• Fondamental physics: speed of  gravity

• Formation of  active galactic nuclei?

Need a gas-rich environment:
e.g. galaxy merger

or AGN disk (Graham+20,+22)

Credits: ESA
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Identification of  BBHs before/after GW detection

Binary black hole!

Transient source… 

LISA

e.g ATHENA, Vera Rubin…✘

✓

o LISA: space-based gravitational wave detector
0.1-100 mHz band

➢ BBHs 104−7M⨀ : ~10 days before merger

How to distinguish binary black holes from other (transient) sources ?

o PTA: Pulsar Timing Arrays
1nHz-100nHz band

➢ Close individual BBHs 107−10M⨀ mergers
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Modelling a BBH and its circumbinary disk

➢ Still, a computationally-heavy, and conceptually more complex, construction (see e.g. Ireland+16):

➢ Construction valid until the BBH motion becomes relativistic

• GR-AMRVAC code (Keppens+12, GR: Casse+17)

• How does the fluid know about the binary black hole?

➢ Newtonian gravity ? (e.g. D’Orazio+13)  

➢ Solving the Einstein’s equations ? (e.g. Einstein Toolkit, Löffler+12)

➢ Extend GR-AMRVAC to dynamical spacetimes + implement approximate analytical BBH metric valid in 

the circumbinary region (Mignon-Risse et al. 2022, MNRAS)

Credits: ESA Credits: LIGO/T. Pyle 

Luminet, 1979
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Circular orbits: accretion structures and EM variability

Surface density

1. Cavity at ~2x separation
(Artymowicz+94)

2. Streams (Artymowicz+96) & spiral arms

3. An overdensity, or « lump » 
(e.g. MacFadyen+08, Shi+12, Noble+12, 

Mignon-Risse+23…)

𝑞 = 1

𝐹𝜐(𝑡, Ԧ𝑥)

i= 70°
• GR ray-tracing in BBH metric

with GYOTO (Vincent+11)

no fast-light approximation

• Simple thermodynamical model

𝑇~Σ𝛾−1, 𝛾 = 5/3

Variability toy model
Mignon-Risse et al. subm. (a)

2D GRHD
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Which frequency band to observe this modulation?

→ UV/optical for most LISA/PTA sources

LISA PTA

For 𝑞 = 1, ሶ𝑀 = 0.5 ሶMEdd
Time-to-merger estimated analytically (Peters 1964)

𝑀 = 105M⨀
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Higher-frequency EM signatures from individual disks but...

Credits: D’Ascoli+18

See also Franchini+24, Cocchiararo+24

𝑀 = 105M⨀

• Expected X-ray emission from « mini-disks » 

but...

• Gas plunges → weak radiative efficiency (Gutiérrez+22)

• Between (inner) last stable orbit and (outer) tidal truncation

→ mini-disk disappearance (no GR: Krauth+23+25, Franchini+24)

• Only the circumbinary disk remains

• but BBH inspirals faster: binary-disk « decoupling »
e.g. Armitage & Natarayan 2002

→ Survival of  EM lump modulation « post-decoupling »?

Credits: Krauth+23
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Modelling the inspiral

Pseudo-stationary state

Circular

Time

Inspiral

𝑞 ∈ [0.3, 1]

Time to merger : 80
𝑀

107M⨀
days

Circular

Numerical challenges :

• Moving inner boundary

• Spatial resolution disk edge

• Inspiral time ∝ 𝑟12
4

• Inspiral time ∝ 1 + 𝑞 2/4𝑞

?

3.5 PN equation of  motion
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The lump and its modulation survive post-decoupling

Electromagnetic signatures post-decoupling

< 1
𝑀

107M⨀
day

before merger

𝑞 = 1

𝑞 = 0.3

80
𝑀

107M⨀
days

before merger
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Mignon-Risse 
et al. subm. (b)



Conclusions: EM appearance of  pre-merger BBHs
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➢ EM variability in the circular-orbit case

𝑞 ∈ {0.1,0.3,1}

MR+subm. (a)

➢ Lump modulation survival post-decoupling and until < 1
𝑀

107M⨀
day before merger

MR+subm. (b)

while mini-disks will have disappeared already

The last electromagnetic breath of  binary black holes





Viscous-like heating follows the lump’s orbit

The Accretion Power in Astrophysics

Frank, King & Raine 2003

𝑇eff

« viscous » heating

+ shock heating + 

« radiative » cooling

Tang+18



Impact of  inspiral on the EM variability

• Inspiral too short for 105M⨀

• but slowed down if  q < 1

Q: Is the circular-orbit approximation valid for astrophysical sources ?

➢ Define 𝜏circ as the time it takes for the separation to decrease by 10% : circular-orbit OK for ∆𝑡 < 𝜏circ
➢ Compare 𝜏circ to typical integration times of  observations

Need to consider inspiral motion

standard setup



Fluid simulations: variability

• Accretion rate at 𝑟 = 2 𝑏 ≈ cavity radius
(same variability at the domain innermost boundary)

➢ variability at twice the binary-lump beat frequency

2Ωbeat = 2(Ωorb −Ωlump)~1.7Ωorb

➢ Accretion rate variability → Electromagnetic variability ?

𝑃orb/2 < 𝑃beat < 𝑃orb

Time 𝑡
min. BBH – lump distance

Time 𝑡 + 𝑃beat
min. BBH – lump distance

Time 𝑡+ 𝑃orb/2

1

2

1 2 12

lu
m

p

MR+subm. to MNRAS 14/25



Synthetic observations of  pre-merger BBHs

• GYOTO code (Vincent+11) incorporating the BBH approximate metric (Ireland+16)

• Thermal emission, thin disk approximation (Shakura & Sunyaev, 1973)

• Putting physical units back: mass scaling from Lin+13 (M = 105M⨀; 𝑇in = 0.1 keV) as reference

➢ Obtain the multi-wavelength emission map

➢ The metric evolves as photons propagate

➢ Emission map composed of  photons of  different time-origin (hence, fluid outputs!)
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Timing features

𝑞 = 0.1; 𝑏 = 20rg
𝑞 = 0.3; 𝑏 = 36rg

• Flux is normalized by the mean value ⇒ mass-independent lightcurve

• The main modulation of  the lightcurve is produced by the lump

• Relativistic beaming of  non-axisymmetric structures

• Additional modulation at the semi-orbital period

𝑃orb = 0.3
𝑀

106M⨀
ks

𝑃lump~ 1.5
𝑀

106M⨀
ks

Double EM variability: the signature of  circumbinary disks around BBHs? (MR+subm.)

i=70°

• Accretion rate: proxy for the luminosity? (e.g. Krauth+23)

16/25



A robust prediction?

Noble+12, 3D GRMHD

Shi+12, 3D MHD

Ragusa+20, 3D SPH

Tiede+20, 2D Hydro
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Impact of  GWs on the outer disk

Weak (<1%) but increasing modulation of  the EM flux
Mignon-Risse et al. 2023, Astronomical Notes

Retardation effects?
• Disk radius ~2000M = 2000rg
• Orbital period ~600M = 600rg/c



Impact of  GWs on the outer disk
2. Oscillating lapse function: retardation effects → GWs1. Not a 2-armed spiral as in Newtonian gravity

3. Not reproducible with retarded Newtonian potential
4. Diagonal terms of  the source stress-energy tensor



A possible instability origin for the lump

i.  Why do we care ?

➢ Lump is claimed to be a distinct (observational?) feature of  accreting BBHs

ii.  Is Rossby Wave Instability a good candidate ?

1. Exponential growth

2. Rossby Wave Instability criterion fullfilled (extremum in vortensity)

3. Presence of  vortices



Metric validation

21/19

• Correct approximation to Einstein’s equation solution
as done in Mundim+14, Ireland+16

≪ 1

NZ FZ

• Recover the Newtonian equivalent view

Plot the radial derivative of  𝛼 =
−1

𝑔00

MR+22a, subm.



Example of  a direct effect from GR

• Around a Schwarzschild black hole exists a 

so-called « innermost stable circular orbit » 

(ISCO) – Fig. 4.1 of  your lecture notes

𝑟ISCO

22/30

Newtonian gravity

➢ An accretion disk should be truncated at this

ISCO

l ≡ angular momentum of an orbiting particle

l   ⇒ centrifugal force (outward) 



Why using a GR ray-tracing code ?

➢ Concept: solve the geodesic equation for photons back from the observer 

(Earth) to the source

Vincent+13

➢ Relativistic ray-tracing:

e.g. Doppler beaming: matter approaching the observer appears brighter

→ an orbiting dense blob produces a sinusoid in the luminosity

➢ GR effects: 

Light deflection (p. 57)

« Shapiro effect »: time delay

Bohn+15 23/30



Inspiral equation of  motion

Credits: LIGO/T. Pyle 

Rate of  change of  

orbital binding energy

GW flux

Change in mass 

(« tidal heating »)

zero ⇔ circular orbit
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Inspiral equation of  motion

Credits: LIGO/T. Pyle 

Rate of  change of  

orbital binding energy

GW flux

Change in mass 

(« tidal heating »)

zero ⇔ circular orbit

• 3.5 Post-Newtonian equation of motion validated

• Slower inspiral for 𝒒
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From single to binary black holes
Crédits: JohnsonMartin

1 BH

Crédits: LIGO/T. Pyle 

2 BHs

Stationarity

Delayed gravity

Axisymmetry

𝑔𝜇𝜐 =

1 +
2𝑀𝑟

𝜌2
0

0 −𝜌2/Δ

0
4𝑀𝑎𝑟sin2𝜃

𝜌2

0 0

0 0
4𝑀𝑎𝑟sin2𝜃

𝜌2
0

−𝜌2 0

0 −(𝑟2 + 𝑎2 +
2𝑀𝑎2𝑟sin2𝜃

𝜌2
)sin2𝜃

𝑔𝜇𝜐 =

𝑔𝑡𝑡 𝑔𝑡𝑟
𝑔𝑟𝑡 𝑔𝑟𝑟

𝑔𝑡𝜃 𝑔𝑡𝜙
𝑔𝑟𝜃 𝑔𝑟𝜙

𝑔𝜃𝑡 𝑔𝜃𝑟
𝑔𝜙𝑡 𝑔𝜙𝑟

𝑔𝜃𝜃 𝑔𝜃𝜙
𝑔𝜙𝜃 𝑔𝜙𝜙

Bohn+15 26/30



An approximate binary black hole spacetime

Far Zone: 

Flat (Minkowski) + outgoing GWs

Near Zone:

Weak-field post-

Newtonian

expansion

Ireland+16

Credits: LIGO/T. Pyle 

➢ A computationally-heavy construction: example Far Zone

➢ Construction valid down to 𝑟12~8M (because 𝑣 > 0.1 c, slow-motion approx. for PN breaks down)

(Johnson-Mcdaniel+09)

GWs ⤳ accretion disk ?

MR+22, MNRAS

MR+23, A.N.

➢ Why not using Newtonian gravity ? (e.g. D’Orazio+13) 

GR IS important !!
➢ Why not solving the Einstein’s equations ? 

Too expensive for >10 orbits simulations (e.g. Farris+12)
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What does a binary black hole metric look like?
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➢ Far from the binary, similar
to a single BH, except for 
GW residual

𝑔tϕ ≠ 0 → ?

➢ Frame-dragging (Lense-Thirring) effect, as in 
the Kerr metric, but due to the orbital motion 
of  the BBH

𝑔𝜇𝜐 =

1+
2𝑀𝑟

𝜌2
0

0 −𝜌2/Δ

0
4𝑀𝑎𝑟sin2𝜃

𝜌2

0 0

0 0
4𝑀𝑎𝑟sin2𝜃

𝜌2
0

−𝜌2 0

0 −(𝑟2 + 𝑎2 +
2𝑀𝑎2𝑟sin2𝜃

𝜌2
)sin2𝜃
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