

The radio afterglow of GRBs probing explosive transients at the longest wavelengths

with the (fundamental) help of A. Colombo, G. Ghirlanda, M. Giroletti, O. S. Salafia, L. Nava, B. Marcote, and many more...

First ACME Workshop @ Toulouse - 2025

Outline

- 1. Introduction
- 2. GRBs in radio
- 3. GW(s) in radio
- 4. Prospects
- 5. Conclusions

My supervisors and me at Effelsberg

Outline

- 1. Introduction
- 2. GRBs in radio
- 3. GW(s) in radio
- 4. Prospects
- 5. Conclusions

Gamma-Ray Bursts

Credits: NASA's Goddard Space Flight Center

Credits: NASA's Goddard Space Flight Center/CI Lab

See Maria Grazia's talk!

A GRB detected by BATSE on-board the Compton Gamma-Ray Observatory

Outline

1. Introduction

2. GRBs in radio

3. GW(s) in radio

4. Prospects

5. Conclusions

Credits: Sergio Poppi (Inaf Cagliari)

GRBs in Radio

Emission mechanism Forward vs Reverse shocks

Time

Credits: Sergio Poppi (Inaf Cagliari)

GRBs in Radio

Geometry Viewing angle Collimation angle Size and structure

Credits: Sergio Poppi (Inaf Cagliari)

GRBs in Radio

Progenitors Circum-burst density profile

A general view

From Chandra & Frail (2012)

X-rays: 95% Optical: 70% Radio: 31% (*)

the Brightest Of All Time

GRB 221009A

GRB 221009A

$E_{iso} \simeq 3 \times 10^{54} \text{ erg}$

z = 0.151

$R = 1/10000 \, yr^{-1}$

Credit: NASA's Goddard Space Flight Center and Adam Goldstein (USRA)

Credit: NASA/Swift/A. Beardmore (Univ of Leicester)

From Bright, ..., SG et al. (2023)

GRB 221009A

From Rhodes, ..., SG et al. (2024)

VLBI contribution

Observer

2

53

GRB 221009A

Apparent size evolution. From *Giarratana et al. (2024)*

Outline

1. Introduction

2. GRBs in radio

3. GW(s) in radio

4. Prospects

5. Conclusions

GRB 170817A

From Ghirlanda et al. (2019)

GRB 170817A

 $\Gamma_1 < \Gamma_2 < \Gamma_3$

 $E_1 < E_2 < E_3$

PLJ

From Corsi et al. (2018)

QS

VLBI contribution

Observer

From Mooley et al. (2018)

GRB 170817A

(slightly A off-axis GRB

GRB 170817A

75d & 230d from Mooley et al. (2018)

First proof of successful jet from a BNS merger

From Ghirlanda et al. (2019)

Outline

1. Introduction

2. GRBs in radio

3. GW(s) in radio

4. Prospects

5. Conclusions

Technical Information The Telescopes

The SKA telescopes are made up of arrays of antennas – SKA-mid observing mid to high frequencies and SKA-low observing low frequencies – to be spread over long distances. The SKA is to be constructed in phases: A first phase in South Africa and Australia, with a later expansion representing a significant increase in capabilities and expanding into other African countries, with the component in Australia also being expanded.

SKA1-Mid the SKA's mid-frequency telescope

197 dishes (including 64 MeerKAT dishes)

Maximum baseline: 150km

SKA info sheet from the public SKAO website

The Square Kilometer Array

SKA1-Low the SKA's low-frequency telescope

Location: Australia

Frequency range: 50 MHz 350 MHz

131,072 512 stations

Maximum baseline:

~74km

From the public ngVLA website

The ngVLA

Main: 214 x 18m SBA: 19 x 6m LBA: 30 x 18m

Adapted from *Ghirlanda et al. (2013)*

To be updated!

From 30% to almost 100% of detection rate

Adapted from *Ghirlanda et al. (2013)*

To be updated!

From 30% to almost 100% of detection rate

From <15% to almost 50% of detections at the transition time

Adapted from *Ghirlanda et al. (2013)*

To be updated!

From 30% to almost 100% of detection rate

From <15% to almost 50% of detections at the transition time

+VLBI: structure and geometry

Adapted from Ghirlanda et al. (2013)

To be updated!

From 30% to almost 100% of detection rate

From <15% to almost 50% of detections at the transition time

+VLBI: structure and geometry

...Unknown!

NSNS = $2.8^{+4.4}_{-2.1}$ yr⁻¹

GW counterparts in the ET era

From Colombo et al. (2025)

 $\overline{\text{BHNS}} = 0.11^{+0.10}_{-0.07} \text{ yr}^{-1.00}$

(some) Conclusions

(some) Conclusions

(some) Conclusions

Take home message

Take home message

Rodio is

to study GRBs

Take home message

Rodio is

to study GRBs

Backup Slides

From Giarratana et al. (in press)

From Giarratana et al. (2024)

GRB 221009A

The SKA and the ngVLA

SKA1 Telescope Expected Performance – Imaging

Nominal frequency	110 MHz	300 MHz	770 MHz	1.4 GHz	6.7 GHz	12.5 GH
Range [GHz]	0.05-0.35	0.05-0.35	0.35-1.05	0.95-1.76	4.6-8.5	8.3-15.4
Telescope	Low	Low	Mid	Mid	Mid	Mid
FoV [arcmin]	327	120	109	60	12.5	6.7
Max. resolution [arcsec]	9.7	3.5	0.7	0.3	0.06	0.03
Max. bandwidth [MHz]	300	300	700	810	3900	2 x 2500
Cont. rms, 1hr [µJy/beam] ª	26	14	4.4	2	1.3	1.2
Line rms, 1hr [µJy/beam] ^ь	1850	800	300	140	90	85
Resolution range for cont. & line rms [arcsec] ^c	12-600	6-300	1-145	0.6-78	0.13-17	0.07-9
Channel width (uniform resolution across max. bandwidth) [kHz]	5.4	5.4	13.4	13.4	80.6	80.6
Narrowest bandwidth, zoom mode [MHz]	3.9	3.9	3.1	3.1	3.1	3.1
Finest zoom channel width [Hz]	226	226	210	210	210	210

- **a.** Continuum sensitivity at nominal frequency, assuming fractional bandwidth of $\Delta v/v = 0.3$
- **b.** Line sensitivity at nominal frequency, assuming fractional bandwidth per channel of $\Delta v/v = 10^{-4}$ (>10⁻⁶ will be possible]

c. The sensitivity numbers apply to the range of beam sizes listed For more details refer to the document "Anticipated SKA1 Science Performance" (SKA-TEL-SKO-0000818 available on astronomers. skatelescope.org and at arxiv.org/abs/1912.12699)

SKA info sheet from the public SKAO website.

	ngVLA Key Performance Metrics						
Parameter [units]	2.4 GHz	8 GHz	16 GHz	27 GHz	41 GHz	93 Gł	
Band Lower Frequency, <i>f</i> _L [GHz]	1.2	3.4	12.3	20.5	30.5	70	
Band Upper Frequency, <i>f</i> _H [GHz]	3.5	12.3	20.5	34.0	50.5	11	
Field of View FWHM [arcmin]	24.852	7.440	3.561	2.143	1.442	0.6	
Aperture Efficiency [%]	0.828	0.936	0.941	0.920	0.886	0.6	
Effective Area, <i>A_{eff}</i> x 10 ³ [m ²]	51.41	58.15	58.42	57.10	55.03	40	
System Temp, <i>T</i> _{sys} [K]	17.07	22.00	24.40	32.42	47.41	65	
Max Inst. Bandwidth [GHz]	2.3	8.8	8.2	13.5	20.0	20	
Antenna SEFD [Jy]	232.3	264.8	292.2	397.3	602.8	11	
Resolution of Max. Baseline θ _{max} [mas]	2.97	0.89	0.43	0.26	0.17	0.(

Naturally Weighted Sensitivity

Continuum rms, 1 hr [<i>µ</i> Jy/beam]	0.24	0.14	0.16	0.17	0.21	0.4
ngVLA exp	ecte	d pe	rforma	ance.	From	the
р	Jolic	ngVl	_A we	bsite.		

Milestones		Mid (end-dat	te)	Low	(end-date)		
AA0.5 • 4 Mid dishes • 4 Low stations		2026 Jan			2024 Dec		
AA1 • 8 Mid dishes • 18 Low stations	;	2026 Aug			2025 Nov		
AA2 • 64 Mid dishes • 64 Low stations	;	2027 Jul		2026 Oct			
AA* (staged delivery p 144 Mid dishes 307 Low station 	lan) 1s	2028 May		2028 Jan			
Operations Readiness Review		2028 Aug		2028	Apr		
Formal end of construc (including schedule contingency)	tion	2029 Mar					
AA4 (design baseline) • 197 Mid dishes • 512 Low station	าร	TBD					
		Maximum baseline length					
Telescope	AA2		AA* AA4		AA4		
Low	39 0 k	m	73.4 km		73.4 km		

Telescope	AA2	AA *	AA4					
Low	39.0 km	73.4 km	73.4 km					
Mid	108.0 km (36.0 km, excluding dish SKA008)	108.0 km (36.0 km, excluding dish SKA008)	159.6 km					

Timeline and maximum baseline length.

The SKA

GW counterparts in the ET and CE era

Adapted from *Colombo et al.* (2025)

GW counterparts in the ET and CE era

uncertainty on the overall merger rate, while systematic errors are not included.

	GW ET	KN+GW			GRB Afterglow+GW				GRB Prompt+GW
		J	z	8	Radio	Optical	X-rays	VHE	Fermi
NSNS									
Limit	12	21	24.4	26	0.01	26	10^{-13}	CTA	3.09×10^{-7}
ΕΤΔ									
Rate	$1.16^{+1.79}_{-0.85} \times 10^4$	$2.4^{+3.8}_{-1.8}$	271^{+419}_{-200}	$2.54^{+3.93}_{-1.88} \times 10^3$	15^{+23}_{-11}	15^{+23}_{-11}	33^{+51}_{-24}	$0.03^{+0.04}_{-0.02}$	21^{+53}_{-13}
$(\Delta\Omega_{90\%} < 100 \text{deg}^2)$	(130^{+202}_{-96})	$(1.8^{+2.8}_{-1.3})$	(42^{+65}_{-31})	(104^{+160}_{-76})	$(2.8^{+4.4}_{-2.1})$	$(1.2^{+1.8}_{-0.9})$	$(1.7^{+2.7}_{-1.3})$	$(0.01^{+0.02}_{-0.01})$	$(1.3^{+2.1}_{-1.0})$
ET2L									
Rate	$2.40^{+3.70}_{-1.77} \times 10^4$	$2.4^{+3.8}_{-1.8}$	268^{+415}_{-198}	$2.89^{+4.47}_{-2.13} \times 10^3$	15^{+23}_{-11}	20^{+31}_{-15}	45^{+69}_{-33}	$0.03^{+0.04}_{-0.02}$	27^{+68}_{-17}
$(\Delta\Omega_{90\%} < 100 \text{deg}^2)$	(412^{+636}_{-304})	$(2.0^{+3.2}_{-1.5})$	(125^{+193}_{-92})	(283^{+437}_{-208})	$(6.6^{+10.1}_{-4.8})$	$(4.0^{+6.1}_{-2.9})$	$(5.7^{+8.8}_{-4.2})$	$(0.02^{+0.03}_{-0.01})$	$(3.9^{+6.1}_{-2.9})$
$ET\Delta + 2CE$									
Rate	$6.70^{+10.34}_{-4.93} \times 10^4$	$2.4^{+3.8}_{-1.8}$	278^{+430}_{-205}	$3.29^{+5.09}_{-2.43} \times 10^3$	16^{+25}_{-12}	25^{+38}_{-18}	65^{+100}_{-45}	$0.03^{+0.04}_{-0.02}$	37^{+100}_{-23}
$(\Delta\Omega_{90\%} < 100 \text{deg}^2)$	$(4.87^{+7.53}_{-3.60} \times 10^4)$	$(2.4^{+3.8}_{-1.8})$	(270^{+417}_{-200})	$(3.10^{+4.78}_{-2.28} \times 10^3)$	(16^{+25}_{-12})	(24^{+38}_{-18})	(63^{+97}_{-46})	$(0.03^{+0.04}_{-0.02})$	(36^{+56}_{-27})
ET2L + 2CE									
Rate	$7.81^{+12.06}_{-5.76} \times 10^4$	$2.4^{+3.8}_{-1.8}$	278^{+430}_{-205}	$3.31^{+5.12}_{-2.44} \times 10^3$	16^{+25}_{-12}	25^{+39}_{-19}	68^{+100}_{-50}	$0.03^{+0.04}_{-0.02}$	38^{+100}_{-23}
$(\Delta\Omega_{90\%} < 100 \text{deg}^2)$	$(6.04^{+9.32}_{-4.45} \times 10^4)$	$(2.4^{+3.8}_{-1.8})$	(270^{+417}_{-200})	$(3.10^{+4.78}_{-2.28} \times 10^3)$	(16^{+25}_{-12})	(24^{+38}_{-18})	(63^{+97}_{-46})	$(0.03^{+0.02}_{-0.02})$	(36^{+56}_{-27})
BHNS									
Limit	12	21	24.4	26	0.01	26	10 ⁻¹³	СТА	3.09×10^{-7}
ΕΤΔ									
Rate	$1.61^{+1.87}_{-1.10} \times 10^4$	$0.06^{+0.07}_{-0.04}$	$4.9^{+5.6}_{-3.3}$	22^{+26}_{-15}	$0.24^{+0.28}_{-0.17}$	$1.3^{+1.5}_{-0.9}$	$1.6^{+1.9}_{-1.1}$	< 10 ⁻³	$0.50^{+0.58}_{-0.34}$
$(\Delta\Omega_{90\%} < 100 \text{deg}^2)$	(109^{+127}_{-75})	$(0.05^{+0.05}_{-0.03})$	$(0.9^{+1.1}_{-0.6})$	$(3.0^{+3.5}_{-2.1})$	$(0.10^{+0.11}_{-0.07})$	$(0.12^{+0.14}_{-0.08})$	$(0.16^{+0.19}_{-0.11})$		$(0.07^{+0.07}_{-0.05})$
ET2L									
Rate	$2.92^{+3.38}_{-1.98} \times 10^4$	$0.06^{+0.07}_{-0.04}$	$4.8^{+5.6}_{-3.3}$	23^{+27}_{-16}	$0.24^{+0.28}_{-0.17}$	$1.9^{+2.2}_{-1.3}$	$2.4^{+2.8}_{-1.7}$	< 10 ⁻³	$0.54^{+0.63}_{-0.37}$
$(\Delta\Omega_{90\%} < 100 \text{deg}^2)$	(368^{+426}_{-250})	$(0.05^{+0.06}_{-0.04})$	$(2.2^{+2.6}_{-1.5})$	$(7.1^{+8.3}_{-4.9})$	$(0.17^{+0.20}_{-0.12})$	$(0.28^{+0.33}_{-0.19})$	$(0.33^{+0.38}_{-0.22})$		$(0.17^{+0.19}_{-0.11})$
$ET\Delta + 2CE$									
Rate	$7.28^{+8.45}_{-4.96} \times 10^4$	$0.06^{+0.07}_{-0.04}$	$4.9^{+5.6}_{-3.3}$	24^{+27}_{-16}	$0.25^{+0.29}_{-0.17}$	$3.3^{+3.8}_{-2.2}$	$5.3^{+6.2}_{-3.6}$	< 10 ⁻³	$0.75^{+0.87}_{-0.51}$
$(\Delta\Omega_{90\%} < 100 \text{deg}^2)$	$(5.65^{+6.55}_{-3.85} \times 10^4)$	$(0.06^{+0.07}_{-0.04})$	$(4.8^{+5.6}_{-3.2})$	(24^{+27}_{-16})	$(0.25^{+0.29}_{-0.17})$	$(3.3^{+3.8}_{-2.2})$	$(5.3^{+6.2}_{-3.6})$		$(0.74^{+0.86}_{-0.50})$
ET2L + 2CE									
Rate	$8.30^{+9.63} \times 10^{4}$	$0.06^{+0.07}$	$4.9^{+5.6}$	24^{+28}	$0.26^{+0.30}_{-0.10}$	$3.3^{+3.9}$	$5.3^{+6.2}$	< 10 ⁻³	$0.75^{+0.87}$
(10 1001 2)	-101	-0.04	-11	16	01x		-36		-0.51

Table 2. Detection limits and predicted detection rates for NSNS and BHNS, assuming ET triangle 10 km. We report in parenthesis the detection rates assuming $\Delta\Omega_{90\%} < 100 \text{deg}^2$. The GW detection limits refer to the S/N_{net} threshold. Near infrared and optical limiting magnitudes are in the AB system; radio limiting flux densities are in mJy @ 1.4 GHz; X-ray limiting flux densities are in erg cm⁻² s⁻¹ keV⁻¹ @ 1 keV; gamma-ray limiting fluence is in erg cm⁻² (*Fermi/GBM*). Detection rates are in yr⁻¹. The reported errors, given at the 90% credible level, stem from the

From Colombo et al. (2025)