

SEARCH FOR ORPHAN GAMMA-RAY BURST AFTERGLOWS WITH THE VERA C. RUBIN OBSERVATORY AND FINK

GRENOBLE | MODANE

- ACME Workshop -

MARINA MASSON¹, JOHAN BREGEON¹

¹Univ. Grenoble Alpes, CNRS, Grenoble INP*, LPSC-IN2P3, Grenoble, France * Institute of Engineering Univ. Grenoble Alpes

7-11 April, 2025

GENERAL CONTEXT

THE ORPHAN AFTERGLOW: A GRB VIEWED OFF-AXIS

GRB (prompt emission) = short and highly energetic (~ 10⁵¹ erg) gamma-ray flashes (observed with Fermi or Swift in keV – GeV)

Afterglow = long-lasting and fading emission following the gamma prompt emission

Orphan afterglow = afterglow observed offaxis (without gamma-ray emission) ⇒ Hard-to-find, faint and slow transients! (Just a few candidates discovered so far)

GENERAL CONTEXT THE VERA C. RUBIN OBSERVATORY

Will perform the 10-year Legacy Survey of Space and Time (LSST)
 ⇒ Explore the transient optical sky (first data expected for 2025!)

Filters

u, g, r, i, z, y

g, r, i

FOV

(deg²)

9.6

47

Cadence

3-night

2-night

10x more data

than **ZTF**!

• The Dark Energy Science Collaboration (DESC) Orphan afterglow project approved within the Time Domain working group (<u>https://lsstdesc.org/</u>)

Nightly limiting

magnitude

24.5

20.5

Survey

LSST

ZTF

https://www.lsst.org/

GENERAL CONTEXT THE ALERT BROKER FINK

Detection of a source > specified detection threshold in the difference image \Rightarrow something has changed in the sky = alert

See Emille's talk

GENERAL CONTEXT THE ALERT BROKER FINK

Detection of a source > specified detection threshold in the difference image \Rightarrow something has changed in the sky = alert

See Emille's talk!

Alert broker = software that process data from a telescope:

- Cross-matches with catalogues
- Generate photometric classification based on light curve analyses

FINK = one of the official alert broker of Rubin LSST, developed by the IJCLab IN2P3

GENERAL CONTEXT THE ALERT BROKER FINK

Detection of a source > specified detection threshold in the difference image \Rightarrow something has changed in the sky = alert

See Emille's talk!

Alert broker = software that process data from a telescope:

- Cross-matches with catalogues
- Generate photometric classification based on light curve analyses

FINK = one of the official alert broker of Rubin LSST, developed by the IJCLab IN2P3

GENERAL CONTEXT MOTIVATIONS

Goal = To implement a filter in FINK to identify orphan afterglows in the Rubin LSST data

Why study orphan afterglows?

- More information on the GRB physics and their progenitors (acceleration of particles, jet formation and structure...)
- Multi-messenger analysis with gravitational waves: separate measure of the distance and the redshift to calculate the Hubble constant H0

$$d_L(z) = \frac{cz}{H_0}$$

Identification of orphans based on their light curve

https://github.com/geoffryan/afterglowpy

Identification of orphans based on their light curve

Forward shock model + electron synchrotron model (Van Eerten et al. 2010)

Studied parameters:

- Energy E₀
- Circumburst medium density n₀
- Redshift z
- Observer angle θ_{obs}
- Jet type (uniform or structured)
 - Core angle θ_c
 - Truncature angle θ_w

Marina Masson | ACME Workshop | April, 2025

https://github.com/geoffryan/afterglowpy

See Clément's

5/17

talk

IMPACT OF THE MODEL PARAMETERS ON THE LIGHT CURVE

Scan of the model parameters \Rightarrow study their impact on the observability of the afterglow

 \Rightarrow Impact of parameters on observability may balance out each other \Rightarrow The parameters space is very large

Identification of orphans based on their light curve

Forward shock model + electron synchrotron model (Van Eerten et al. 2010)

Studied parameters:

- Energy E₀
- Circumburst medium density n₀
- Redshift z
- Observer angle θ_{obs}
- Jet type (uniform or **structured**)
 - Core angle θ_c
 - Truncature angle θ_w

⇒ Need some parameters distributions!

SIMULATION OF A POPULATION OF GRBS POPULATION OF SHORT GRBS BASED ON SBAT4

ENERGY E_{iso} (log)

50

48

52

Goal: To simulate realistic distributions for GRBs

SBAT4 catalogue (D'Avanzo et al. 2014) = selected sample of **short** GRBs observed by the Swift satellite up to June 2013

• Detected in the 15-150 keV energy band

all GRBS

200000

Number of GRBs 120000

50000

38

40

42

44

46

 $log_{10}(E_0)$

GRBs with $F_{BAT} > 3.5 \text{ ph/s/cm}^2$

• Selection criteria: peak flux PF₆₄ > 3.5 ph/s/cm²

SIMULATION OF A POPULATION OF GRBS POPULATION OF SHORT GRBS BASED ON SBAT4

Marina Masson | ACME Workshop | April, 2025

SIMULATION OF A POPULATION OF GRBS POPULATION OF SHORT GRBS BASED ON SBAT4

rubin_sim package \Rightarrow Realisation of the scheduler simulation for the 10 years of LSST (<u>https://github.com/lsst/rubin_sim</u>)

GRB date: 12 March, 2030

GRB (RA, Dec) coordinates: (19h00m55.04s, -53d23m42.38s)

Parameters:

- Power-Law jet
- $E_{iso} = 1.3 \times 10^{52} \text{ erg}$
- $\theta_{obs} = 21.2^{\circ}$
- $\theta_c = 2.9^\circ$
- $\theta_w = 8.6^\circ$
- $n_0 = 0.45 \text{ cm}^{-3}$
- z = 0.001

⇒ Only ~ 4 % of the simulated orphans have > 1 point in their "observed" light curve

PSEUDO-OBSERVATION ANALYSIS CHARACTERISATION OF LIGHT CURVES

Defined features:

- Duration between the first detection and the peak
- Increase rate of the magnitude
- Decrease rates of the magnitude in the 1st third and the last third of the light curve
- Colours (g-r and r-i)

PSEUDO-OBSERVATION ANALYSIS CHARACTERISATION OF LIGHT CURVES

Defined features:

- Duration between the first detection and the peak
- Increase rate of the magnitude
- Decrease rates of the magnitude in the 1st third and the last third of the light curve
- Colours (g-r and r-i)

PSEUDO-OBSERVATION ANALYSIS CHARACTERISATION OF LIGHT CURVES

Defined features:

- Duration between the first detection and the peak
- Increase rate of the magnitude
- Decrease rates of the magnitude in the 1st third and the last third of the light curve
- Colours (g-r and r-i)

PSEUDO-OBSERVATION ANALYSIS RESCALING DATA TO THE R-BAND

 ν_c decreases with time \Rightarrow we don't know which value of β we have to use

Sari & Piran 1998

PSEUDO-OBSERVATION ANALYSIS RESCALING DATA TO THE R-BAND

 ν_c decreases with time \Rightarrow we don't know which value of β we have to use

What we do:

 $F_{\nu} \propto \nu^{-\beta}$

1. Test several values of β between -(p-1)/2 and -p/2

2. Keep the one that minimize the distance between the re-scaled points and the true r-band points

Sari & Piran 1998

PSEUDO-OBSERVATION ANALYSIS FIT OF PSEUDO-OBSERVED LIGHT CURVES

Fit data with a function with free parameters (Russeil et al. (arXiv:2402.04298)):

$$mag(t) = A \times t + B \# C \times \exp(-D \times t)$$

Points are rescaled to be on the r-band:

$$F_{\nu} \propto \nu^{-\beta}$$

All features used to characterize one event:									
(t _{peak} -t ₀)	Increase rate	Decrease rate (1/3)	Decrease rate (3/3)	Color	А	В	С	D	χ^2
									10/

Marina Masson | ACME Workshop | April, 2025

CREATION OF A CLASSIFIER USING ELASTICC DATA AS A BACKGROUND

https://portal.nersc.gov/cfs/lsst/ DESC_TD_PUBLIC/ELASTICC/

ELASTICC = DESC simulation of LSST alerts (Extended LSST Astronomical Time-Series Classification Challenge)

Synthetic transient light curves and host galaxies for:

- Supernovae
- Active galactic nuclei
- Tidal disruption events
- Kilonovae
- M-dwarf flares
- Cepheid variables
- ...
- But no orphans!

 \Rightarrow Create a realistic data stream to test broker alert systems and classifiers

Marina Masson | ACME Workshop | April, 2025

CREATION OF A CLASSIFIER FIRST TEST OF A MACHINE LEARNING ALGORITHM

(only non-periodic events)

CREATION OF A CLASSIFIER FIRST TEST OF A MACHINE LEARNING ALGORITHM

CREATION OF A CLASSIFIER FIRST TEST OF A MACHINE LEARNING ALGORITHM

Marina Masson | ACME Workshop | April, 2025

CONCLUSION & PERSPECTIVES

GOAL Implement a filter in Fink to identify orphan afterglows in Rubin LSST data (code available on github)

CONCLUSION

Simulation of a population of short GRBs based on Swift BAT4 catalogue and their observation by Rubin LSST Characterise "pseudo-observed" light curves of orphan afterglows Create a ML filter to discriminate orphans among Rubin LSST data

CONCLUSION & PERSPECTIVES

GOAL Implement a filter in Fink to identify orphan afterglows in Rubin LSST data (code available on github)

CONCLUSION

Simulation of a population of short GRBs based on Swift BAT4 catalogue and their observation by Rubin LSST Characterise "pseudo-observed" light curves of orphan afterglows Create a ML filter to discriminate orphans among Rubin LSST data

PERSPECTIVES

Adapt our filter and test it on ZTF data Compare with another implemented model Discussion on GW-orphan joint detection

CONCLUSION & PERSPECTIVES

GOAL Implement a filter in Fink to identify orphan afterglows in Rubin LSST data (code available on github)

CONCLUSION

Simulation of a population of short GRBs based on Swift BAT4 catalogue and their observation by Rubin LSST Characterise "pseudo-observed" light curves of orphan afterglows Create a ML filter to discriminate orphans among Rubin LSST data

PERSPECTIVES

Adapt our filter and test it on ZTF data Compare with another implemented model Discussion on GW-orphan joint detection THANK YOU FOR YOUR ATTENTION!

BACKUP SLIDES

Marina Masson | ACME Workshop | April, 2025

MORE DETAILS ON THE CLASSIFIER

Marina Masson | ACME Workshop | April, 2025

LOOKING INTO ZTF DATA

MULTI-MESSENGER ANALYSIS WITH GW

Multi-messenger analysis with gravitational waves: estimate the Hubble constant H_0

For *z* << *1*:

$$d_L(z) = \frac{cz}{H_0}$$

GRAVITATIONAL WAVE COUNTERPART

- Specific analysis needed because we have a precise position but large uncertainties on T_0 for orphans
- GWTC-3 catalogue all-sky triggers: given a position, look for synchronised GW signals
- How the size of the time window for the PyCBC coherent analysis impacts the number of detected events?

HOST EXTINCTION

Host extinction more important for long GRBs than for short GRBs

KILONOVA OVERLAP

Collaboration with the Osservatorio Astronomico di Brera, Italy

KILONOVA OVERLAP

Collaboration with the Osservatorio Astronomico di Brera, Italy

