

Clara Plasse (CEA, France)

D. Götz, J. Guilet, A. Meuris, N. Leroy, T. Dal Canton, A. Reboul-Salze, R. Raynaud, M. Bugli

Can we constrain the nature of a binary neutron star

merger remnant?

Can we constrain the nature of a binary neutron star

merger remnant?

Gravitational waves

Electromagnetic waves

Can we constrain the nature of a binary neutron star

merger remnant?

Gravitational waves

Gamma-ray bursts X-ray afterglow

X-ray lightcurve (see M. Bernardini's talk)

22

C. Plasse, magnetar remnant of BNS mergers

About magnetars

Cez

-> Slow rotating (2s-10s) magnetars exist

Simulation

Can we detect this kind of neutron stars?

Raynaud et al. (2020)

cea

The millisecond magnetar

C. Plasse, magnetar remnant of BNS mergers

Assuming the equation of state

 $P_0 \sim 1 \text{ ms}$

 $B \sim 10^{15} G$

C. Plasse, magnetar remnant of BNS mergers

Gravitational waves simulation

With pycbc

50° 0° 0° 21ⁿ 18^h 15^h 12^h 9^h 9^h 9^h 3^h -30° -50° -60°

In a given LVK observing run (O4, O5)

Input << NS progenitors masses and distances

Output >> SNRs, skymaps (localisation on the sky)

Simulation of a population of binary neutron stars The recipe for 04 and 05:

- 1. Chose masses according to our current gravitational waves observations (LVK O3)
- 2. Simulate the gravitational wave signal of the BNS merger through the PyCBC detection pipeline for sky localization
- 3. Select well localized systems
- 4. GRB analysis on remaining systems to infer predictions on future X-ray observations

2 detection scenarios

In the free zone

In the trapped zone

- More solid angle coverage,
- Lower luminosity,
- Radiation reprocessed -> longer emission (even after a collapse into a BH !).

-> Detection with smaller FoV, "tiling" instruments (SVOM/MXT)

- Small solid angle coverage,
- Higher luminosity : mean flux
 ~ 3 10⁻⁹ erg.s⁻¹cm^{-2,}
- Shorter duration emission.

-> Detection with wide FoV instruments (EP/FXT)

16

Instrumentation

How can we observe these neutron stars ?

Cez

Space Variable Object Monitor (SVOM)

Ground follow-up

MXT

GRI

15 keV – 5 MeV

In case of a gravitational wave alert from a binary neutron stars merger:

MXT, with its relatively wide FoV (1°x1°), will pave the gravitational wave errobox

C. Plasse, magnetar remnant of BNS mergers

 10^{5}

A 6 s observation with MXT

20

Conclusions

- The nature of GRBs central engine is still an open question: black hole or neutron star ?
- We simulate a magnetar central engine to predict their X-ray emission. Very rare event. But detection possible: organize follow ups now + later (O5 + ET)
- SVOM is designed to unveil the nature of GRBs central engines.
- A single detection would be an important step for GRB physics and merger physics

