

Testing general relativity with gravitational waves

Chris Van Den Broeck

Universiteit Utrecht

First ACME Workshop: The gravitational wave sky and complementary observations Toulouse, 7-11 April 2025

Access to strongly curved, dynamical spacetime

Yunes et al., PRD 94, 084002 (2016)

The nature of gravity

Lovelock's theorem:

"In four spacetime dimensions the only divergence-free symmetric rank-2 tensor constructed solely from the metric $g_{\mu\nu}$ and its derivatives up to second differential order, and preserving diffeomorphism invariance, is the Einstein tensor plus a cosmological term."

Relaxing one or more of the assumptions allows for a plethora of alternative theories:

Berti et al., CQG 32, 243001 (2015)

Most alternative theories: no full inspiral-merger-ringdown waveforms known

Most current tests are model-independent

Fundamental physics with gravitational waves

- 1. The strong-field dynamics of spacetime
 - Is the inspiral-merger-ringdown process consistent with the predictions of GR?
- 2. The propagation of gravitational waves
 - Evidence for dispersion?
- 3. What is the nature of compact objects? *Are the observed massive objects the "standard" black holes of classical general relativity?*
 - Are there unexpected effects during inspiral?
 - Is the remnant object consistent with the no-hair conjecture?
 Is it consistent with Hawking's area increase theorem?
 - Searching for gravitational wave echoes

1. The strong-field dynamics of spacetime

- Inspiral-merger-ringdown process
 - Post-Newtonian description of inspiral phase

$$\Phi(v) = \left(\frac{v}{c}\right)^{-5} \left[\varphi_{0\text{PN}} + \varphi_{0.5\text{PN}}\left(\frac{v}{c}\right) + \varphi_{1\text{PN}}\left(\frac{v}{c}\right)^2 + \ldots + \varphi_{2.5\text{PN}^{(l)}}\log\left(\frac{v}{c}\right)\left(\frac{v}{c}\right)^5 + \ldots + \varphi_{3.5\text{PN}}\left(\frac{v}{c}\right)^7\right]$$

- Merger-ringdown governed by additional parameters $\beta_{n_r} \alpha_n$
- Place bounds on deviations in these parameters:

LIGO + Virgo, arXiv:2112.06861

- Rich physics:
 Dynamical self-interaction of spacetime, spin-orbit and spin-spin interactions
- Can combine information from multiple detections
 - Bounds will get tighter roughly as $1/\sqrt{N_{\text{det}}}$

A theory-specific test with GW230529

Neutron star merging with lower mass-gap event
Stream and the start start start and the start has a finite start sta

Strongest constraints to date on the -1PN coefficient

Einstein-scalar-Gauss-Bonnet theory:

$$S = \frac{1}{16\pi} \int \mathrm{d}x^4 \sqrt{-g} \left(R - 2(\partial\phi)^2 + \ell_{\mathrm{GB}}^2 f(\phi) \mathcal{G} \right)$$

with Gauss-Bonnet invariant

$$\mathcal{G} = R^{\mu\nu\rho\sigma}R_{\mu\nu\rho\sigma} - 4R^{\mu\nu}R_{\mu\nu} + R^2$$

and $f(\phi) = 2\phi + O(\phi^2)$

"Agnostic" test:

$$\delta\hat{\varphi}_{-2} = \frac{-5\ell_{\mathrm{GB}}^4}{168m_1^4}.$$

- Theory-specific test (adding corrections up to 1.5PN):
 - ${\bf \hat{GB}}$. 0.51 M_{\odot}
- Best bound so far!

2. The propagation of gravitational waves

- Dispersion of gravitational waves?
 E.g. as a result of non-zero graviton mass:
 - Dispersion relation:

$$E^2 = p^2 c^2 + m_g^2 c^4$$

• Graviton speed:

$$v_g/c = 1 - m_g^2 c^4/2E^2$$

• Modification to gravitational wave phase:

$$\delta \Psi = -\pi Dc / [\lambda_g^2 (1+z) f] \qquad \qquad \lambda_g = h / (m_g c)$$

Bound on graviton mass:

$$m_g \le 1.76 \times 10^{-23} \,\mathrm{eV}/c^2$$

2. The propagation of gravitational waves

More general forms of dispersion:

 $E^2 = p^2 c^2 + A p^\alpha c^\alpha$

- $\alpha \neq 0$ corresponds to violation of local Lorentz invariance
- $\alpha=2.5$ multi-fractal spacetime
- $\alpha = 3$ doubly special relativity
- $\alpha = 4$ higher-dimensional theories

The propagation of gravitational waves

- > Does the speed of gravity equal the speed of light?
- The binary neutron star coalescence GW170817 came with gamma ray burst, 1.74 seconds afterwards

With a conservative lower bound on the distance to the source:

-3 x 10⁻¹⁵ < $(v_{GW} - v_{EM})/v_{EM}$ < +7 x 10⁻¹⁶

Excluded certain alternative theories of gravity designed to explain dark matter or dark energy in a dynamical way

> LIGO + Virgo + Fermi-GBM + INTEGRAL, ApJ. **848**, L13 (2017) LIGO + Virgo, PRL **123**, 011102 (2019)

3. What is the nature of compact objects?

- Black holes, or still more exotic objects?
 - Boson stars
 - Dark matter stars
 - Clouds of ultralight bosons surrounding black holes
 - Gravastars
 - Wormholes
 - Firewalls, fuzzballs
 - The unknown

3. What is the nature of compact objects?

Anomalous effects during inspiral

Ringdown of newly formed object

Gravitational wave echoes

Anomalous effects during inspiral

Tidal field of one body causes quadrupole deformation in the other:

 $Q_{ij} = -\lambda(\mathrm{EOS}; m) \,\mathcal{E}_{ij}$

where $\lambda(EOS; m)$ depends on internal structure (equation of state)

- Black holes: $\lambda \equiv 0$
- Boson stars, dark matter stars: $\lambda > 0$
- Gravastars: $\lambda < 0$
- Enters inspiral phase at order $(v/c)^{10}$, through $\lambda(m)/m^5 \propto (R/m)^5$
 - $O(10^2 10^3)$ for neutron stars
 - Can also be measurable for black hole mimickers, e.g. boson stars

Anomalous effects during inspiral

Spin of an individual compact object also induces a quadrupole moment:

$$Q = -\kappa \, \chi^2 m^3$$

- Black holes: $\kappa = 1$
- Boson stars, dark matter stars: $\kappa > 0$
- **Gravastars:** $\kappa < 0$

Allow for deviations from black hole value:

$$Q = -(1 + \delta \kappa) \, \chi^2 m^3$$

Possible theoretical values for boson stars: $\kappa \sim 10-150$

... hence constraints are already of interest!

Krishnendu et al., PRD **100**, 104019 (2019) LIGO + Virgo, arXiv:2112.06861

Ringdown of newly formed black hole

Ringdown regime: Kerr metric + linear perturbations

• Ringdown signal is a superposition of damped sinusoids

$$h(t) = \sum_{lmn} \mathcal{A}_{lmn} e^{-t/\tau_{lmn}} \cos(2\pi f_{lmn}t + \phi_{lmn})$$

- Characteristic frequencies f_{lmn} and damping times τ_{lmn}
- > No-hair conjecture: stationary, electrically neutral black hole completely characterized by mass M, spin χ
 - Linearized Einstein equations around Kerr background enforce specific dependences:

$$f_{lmn} = f_{lmn}(M,\chi)$$

 $\tau_{lmn} = \tau_{lmn}(M, \chi)$

Berti et al., PRD 73, 064030 (2006)

• Look for deviations from the expressions for frequencies, damping times:

$$f_{lmn}(M,\chi) \rightarrow (1+\delta \hat{f}_{lmn}) f_{lmn}(M,\chi)$$

 $\tau_{lmn}(M,\chi) \rightarrow (1+\delta \hat{\tau}_{lmn}) \tau_{lmn}(M,\chi)$

Carullo et al., PRD **98**, 104020 (2018) Brito et al., PRD **98**, 084038 (2018)

Ringdown of newly formed black hole

> Look for deviations from the expressions for frequencies, damping times:

 $f_{lmn}(M,\chi) \rightarrow (1 + \delta \hat{f}_{lmn}) f_{lmn}(M,\chi)$ $\tau_{lmn}(M,\chi) \rightarrow (1 + \delta \hat{\tau}_{lmn}) \tau_{lmn}(M,\chi)$

Recent measurements:

LIGO + Virgo, arXiv:2112.06861

Gravitational wave echoes

Cardoso et al., PRL **116**, 171101 (2016) Cardoso et al., PRD **94**, 084031 (2016) Abedi et al., PRD **96**, 082004 (2017) Westerweck et al., PRD **97**, 124037 (2018)

- Exotic objects with corrections near horizon: continuing bursts of radiation called *echoes*
- If microscopic horizon modification $\ell \ll M$ then time between successive echoes

$$T = 65 \, M_{\odot} \qquad \Delta t \sim -nM \log\left(rac{\ell}{M}
ight) \, .$$

where n is set by nature of object:

- n = 8 for wormholes
- n = 6 for thin-shell gravastars
- n = 4 for empty shell
- For GW150914 ($M = 65 M_{\odot}$), taking $\ell = \ell_{\text{Planck}}$, and n = 4: $\Delta t = 117 \text{ ms}$

Tsang et al., PRD **98**, 024023 (2018) Tsang et al., PRD **101**, 064012 (2020) LIGO + Virgo + KAGRA, arXiv:2112.06861

Gravitational wave echoes

Morphology-independent search for echoes: wavelet decomposition

Tsang et al., PRD **101**, 064012 (2020) LIGO + Virgo + KAGRA, arXiv:2112.06861

First tests of Hawking's area increase theorem

> During binary black hole merger, horizon area should not decrease

"Ingoing" black holes considered Kerr

- Measure masses m_1 , m_2 and initial spins χ_1, χ_2 from inspiral signal
- Total initial horizon area:

 $A_0 = A(m_1, \chi_1) + A(m_2, \chi_2)$ where $A(m, \chi) = 8\pi m^2 (1 + \sqrt{1 - \chi^2})$

Final black hole also Kerr

- Obtain mass m_f and spin χ_f from ringdown frequencies and damping times
- Final horizon area:

 $\mathcal{A}_f = \mathcal{A}(m_f, \chi_f)$

► According to the theorem: $\Delta A/A_0 = (A_f - A_0)/A_0 \ge 0$

First tests of Hawking's area increase theorem

According to the theorem: $\Delta A/A_0 = (A_f - A_0)/A_0 \ge 0$

Measurement on GW150914:

Cabero et al., arXiv:1711.09073 Isi et al., arXiv:2012.04486

Agreement at > 95% probability

LISA: A gravitational wave detector in space (2034)

- Laser Interferometer Space Antenna
- Three probes in orbit around the Sun, exchanging laser beams
 - Triangle with sides of a few million kilometers
 - Sensitive to low frequencies (10⁻⁴ Hz - 0.1 Hz)
 - January 2024: definitive approval by ESA!
- Different kinds of sources:
 - Merging supermassive binary black holes (10⁵ – 10¹⁰ M_{sun})
 - Smaller objects in complicated orbits around supermassive black hole

Einstein Telescope and Cosmic Explorer (2035?)

Next-generation groundbased facilities

- Factor 10 improvement in sensitivity over LIGO/Virgo design sensitivity
- Merging binary black holes (3 – 10⁴ M_{sun}) and neutron stars throughout the visible Universe
- 10⁵ detections per year!

Summary

- The first direct detection of gravitational waves has enabled unprecedented tests of general relativity:
 - First access to genuinely strong-field dynamics of vacuum spacetime
 - Propagation of gravitational waves over large distances
 - Probing the nature of compact objects
- Some highlights:
 - Higher-order phase coefficients constrained at ~10% level
 - Graviton mass $m_g < 1.76 \times 10^{-23} \, \text{eV/c}^2$
 - Spin-induced quadrupole moment during inspiral: Access to expected values for boson stars
 - No-hair test consistent with no deviations at ~25% level
 - Area increase theorem passes at > 95% probability
- High-precision tests with next-generation observatories: LISA, Einstein Telescope, Cosmic Explorer
 - Higher accuracy
 - Larger number of sources
 - Propagation of gravitational waves over cosmological distances

Backup slides

2. The propagation of gravitational waves

- > Does the speed of gravity equal the speed of light?
- The binary neutron star coalescence GW170817 came with gamma ray burst, 1.74 seconds afterwards

With a conservative lower bound on the distance to the source:

 $-3 \ x \ 10^{\text{-15}} < (v_{\text{GW}} - v_{\text{EM}}) / v_{\text{EM}} < +7 \ x \ 10^{\text{-16}}$

Excluded certain alternative theories of gravity designed to explain dark matter or dark energy in a dynamical way

> LIGO + Virgo + Fermi-GBM + INTEGRAL, ApJ. **848**, L13 (2017) LIGO + Virgo, PRL **123**, 011102 (2019)

2. The propagation of gravitational waves

Metric theories of gravity allow up to 6 polarizations
 Distinct antenna patterns:

(e) Scalar (s)

$$|F_{t}^{I}(\alpha, \delta)| \equiv \sqrt{F_{+}^{I}(\alpha, \delta)^{2} + F_{\times}^{I}(\alpha, \delta)^{2}}$$

$$|F_{\mathbf{v}}^{I}(\alpha, \delta)| \equiv \sqrt{F_{\mathbf{x}}^{I}(\alpha, \delta)^{2} + F_{\mathbf{y}}^{I}(\alpha, \delta)^{2}},$$

$$|F_s^I(\alpha, \delta)| \equiv \sqrt{F_b^I(\alpha, \delta)^2 + F_l^I(\alpha, \delta)^2}$$

Isi & Weinstein, PRD 96, 042001 (2017)

- > In the case of GW170817, sky position was known from EM counterpart
 - Pure tensor / pure vector = 10²¹ / 1
 - Pure tensor / pure scalar = 10²³ / 1
- Using a "null stream": also look for a mixture

LIGO + Virgo, PRL 123, 011102 (2019)

Pang et al., PRD 101, 104055 (2020)

Alternative polarizations: null stream

 Using a null stream: can look for non-tensorial polarizations (without necessarily being able to tell which ones are present)

Data from D detectors:

$$\mathbf{d} = \begin{pmatrix} d_0 \\ \vdots \\ d_{D-1} \end{pmatrix}$$

Antenna pattern functions, known sky location:

$$\mathbf{F} = \begin{pmatrix} \mathbf{F}_{+} & \mathbf{F}_{\times} \end{pmatrix} = \begin{pmatrix} F_{+,0} & F_{\times,0} \\ \vdots & \vdots \\ F_{+,D-1} & F_{\times,D-1} \end{pmatrix}$$

- Null stream projects out tensorial content
 - What remains can only contain (mixture of) vector and scalar modes
- No evidence for alternative polarizations in GW170817
 Pang et al., PRD 101, 104055 (2020)

Alternative polarizations in pulsar signals

Continuous waves from known pulsars: sky position(α, δ) also known
 Consider hypotheses \mathcal{H}_m that detector output is

$$h_m(t) = \sum_{p \in m} F_p(\alpha, \delta; t) h_p(t)$$

where m is any subset of $\{+, \times, v_X, v_Y, s\}$

Calculate odds ratios

 $\mathcal{O}_N^m = rac{\operatorname{Prob}(\mathcal{H}_m|d)}{\operatorname{Prob}(\mathcal{H}_N|d)}$

where $\, \mathcal{H}_{N} \,$ is the noise-only hypothesis

Results for 200 pulsars analyzed:

LIGO + Virgo, PRL 120, 031104 (2018)

Alternative polarizations in stochastic backgrounds

Search for stochastic backgrounds through cross-correlations of detector outputs:

$$Y = \sum_{p} \int \tilde{s}^{*}(f) \, \tilde{Q}_{p}(f) \, \tilde{s}_{2}(f) \, df \quad \text{with optimal filter} \quad \tilde{Q}_{p}(f) \propto \frac{\gamma_{p}(f) \, \Omega_{p}(f)}{f^{3} S_{1}(f) \, S_{2}(f)}$$

where $\gamma_p(f)$ the overlap reduction function for polarization pand the energy densities $\Omega_p(f)$ are contributions to

$$\Omega(f) = \Omega_0^T \left(\frac{f}{f_0}\right)^{\alpha_T} + \Omega_0^V \left(\frac{f}{f_0}\right)^{\alpha_V} + \Omega_0^S \left(\frac{f}{f_0}\right)^{\alpha_S}$$

> Parameter estimation on Ω_0^T , Ω_0^V , Ω_0^S :

Gravitational wave echoes

- ➤ Ratio of evidences for signal versus glitch: Bayes factor $B_{S/G} = \frac{\operatorname{Prob}(\mathbf{d}|\mathcal{H}_{\text{signal}})}{\operatorname{Prob}(\mathbf{d}|\mathcal{H}_{\text{glitch}})}$
- Analysis of data following the detections of binary coalescences in the 1st and 2nd observing runs of Advanced LIGO/Virgo:

Similarly for Bayes factor signal versus noise, $B_{S/N} =$

 $B_{S/N} = rac{\operatorname{Prob}(\mathbf{d}|\mathcal{H}_{\operatorname{signal}})}{\operatorname{Prob}(\mathbf{d}|\mathcal{H}_{\operatorname{noise}})}$

No statistically significant evidence for echoes following these events

Tsang et al., PRD **98**, 024023 (2018) Tsang et al., PRD **101**, 064012 (2020)

Primordial stochastic backgrounds

