

GRB observations Maria Grazia Bernardini

INAF - Osservatorio Astronomico di Brera, Laboratoire Univers et Particules de Montpellier

See talks on the "Complementary Observations" session: P. Evans, S. Giarratana, L. Natalucci, S. Vergani

Gamma-ray bursts (GRBs)

The most powerful electromagnetic sources in the Universe

PROMPT EMISSION

Duration: ms up to minutes Fluence: ~10⁻⁷ - 10⁻³ erg cm⁻² Flux: ~10⁻⁸ - 10⁻⁴ erg cm⁻² s⁻¹ Energy range: ~ keV up to ~ GeV

AFTERGLOW

Duration: hours to daysFlux: smoothly decayingEnergy range: from GeV to X-rays, UV, optical, IR, radio

Gamma-ray bursts (GRBs)

Two flavors: SGRBs and LGRBs

- Two types of GRBs when classified on the basis of their prompt emission duration: SGRBs (T₉₀<2 s) and LGRBs (T₉₀>2 s)
- SGRBs are spectrally harder than LGRBs

Two flavors: SGRBs and LGRBs

- Two types of GRBs when classified on the basis of their prompt emission duration: SGRBs (T₉₀<2 s) and LGRBs (T₉₀>2 s)
- SGRBs are spectrally harder than LGRBs
- SGRBs ~100 times less energetic than LGRBs but have similar luminosities

Two flavors: SGRBs and LGRBs

D'Avanzo+14, Brivio+ in prep.

SGRBs and LGRBs: a tale of two progenitors

- Redshift distributions significantly different
- LGRBs follow the SFR (with some caveats), while SGRBs a delayed SFR
- LGRB hosts are young, less massive and with high sSFR, while SGRBs explode in all type of galaxies
- LGRBs track the UV light of their host, while SGRBs explode with significant offset w.r.t. their host
 - LGRBs associated to young stellar population, while SGRBs to old stellar population whose explosion site is not representative of the progenitor birth site

SGRBs and LGRBs: a tale of two progenitors

- LGRBs track the UV light of their host, while SGRBs explode with significant offset w.r.t. their host
 - LGRBs associated to young stellar population, while SGRBs to old stellar population whose explosion site is not representative of the progenitor birth site
- SNe associated to LGRBs <- spectroscopically confirmed
- KNe associated to SGRBs <- chromatic excesses in SGRB afterglows

GW 170817/GRB 170817A/AT2017gfo: the smoking gun of SGRB progenitors 🔅

Abbott+17; Goldstein+17; Savchenko+17

AT2017gfo spectral sequence and light curve

First direct observation of a **SGRB** (GRB170817A) associated to a GW event originated by a BNS merger (GW 170817) and to the first spectroscopically identified **KN** (AT2017gfo)

BIRTH OF THE MULTI-MESSENGER ASTRONOMY WITH GWs

Gamma-ray bursts: the current paradigm

Short: merging of compact objects with a NS

Long: core collapse of massive stars

Central engine ultra relativistic outflow "jet"

Gamma-ray bursts: the current paradigm PROMPT EMISSION

Gamma-ray bursts: the current paradigm AFTERGLOW

Gamma-ray bursts: the current paradigm

Usov 1992, Duncan & Thompson 1992, Dai & Lu 1998, Zhang & Meszaros 2001, Metzger et al. 2011,

Gamma-ray bursts: the current paradigm

See C. Pellouin's talk

GRB 170817A: the first direct observation of the jet structure

➡First GRB seen off-axis

Evidence of proper motion and measure of the source size with VLBI Ghirlanda+19, Mooley+18

➡Final proof of the structured jet scenario

• X-ray and radio emission non detected until 9 days and peaking at ~100 days Alexander+17,18; D'Avanzo+18;

Dobie+18; Fong+19; Haggard+17; Hallinan+17; Hajela+19; Margutti+17,18; Mooley+18a,b; Reasmi+18; Ruan+18; Troja+18a,b,19,20; Piro+19 and many many others

Structured jet: relativistic core with $\theta_{jet} < 5 \text{ deg and}$ $\theta_{view} \sim 20 \text{ deg}$

See S. Giarratana's talk

Key-points in GRB observations

- Triggering facilities to discover and localize GRBs + rapid public dissemination of the alerts

 - Need to monitor GRBs at all wavelengths (from GeV to radio) with different facilities

From precise Swift/XRT localization to sensitive follow-up: the example of GRB 230307A; from 2025 Swift Senior Review, Levan et al. (2024)

Publicly accessible data and GRB information

ALL LESSONS LEARNED FROM 20 YEARS OF SWIFT

Need to pinpoint GRB locations to spot counterparts at other wavelengths and also the associated SNe-KNe Need to catch the afterglow when it is still bright for spectroscopic measurement of the redshift

https://www.swift.ac.uk/

Key-points in GRB observations

- Large samples (~1700 GRBs from Swift) enable statistical studies of GRB properties
 - ➡ Need for **redshift measurements** to study the physical properties
 - Need to build samples that are representative of the population of GRBs that we want to study

Complete (flux-limited) samples of events, with favorable observing conditions for ground-based observations (redshift determination)

BAT6 sample

- Salvaterra+12
- 124 long GRB
 peak flux > 2.6 photons/s/cm²
 ~85% with redshift (wrt 40% whole Swift sample)

D'Avanzo+14

o 27 short GRB

 \circ peak flux > 3.5 photons/s/cm²

~60% with redshift (wrt 25% whole Swift sample)

- Iuminosity function and redshift distribution
- prompt/afterglow emission rest-frame properties
- ➡GRB environments
- host galaxy properties
- ⇒simulations and predictions for high-z and GW (rates)

GRB observations: present and future status

SVOM observations: prompt emission

- 4-120 keV
- Fov ~ 2 sr
- Loc. < 12'
- 42-80 GRBs/yr, including 3-4 GRBs/yr at z>5

- 2x5400 deg² (half of ECLAIRs fov)
- 500-800 nm
- m_{lim} ~ 16-17 (10s exposure)
- ECLAIRs+GRM measure the prompt spectrum over 3 decades in energy
- GWAC will add a constraint on the **associated prompt optical emission** in a good fraction of cases (16%).

GRM (3 GRDs):

- 15 keV 5 MeV
- Fov ~ 5.6 sr
- Loc. ~5-10 deg (3 GRDs)
- ~90 GRBs/yr
 - ECLAIRs sensitive to **all classes of** long GRBs
 - Sensitivity to short GRBs improved by combining ECLAIRs+GRM

Bernardini+17

SVOM observations: prompt emission

- MXT can detect and localize the X-ray afterglow in >90% of GRBs after a slew
- VT + ground segment will detect, localize and characterize the visible-NIR afterglow

Simulation of GRB 091020

- ECLAIRs [4-150 keV 10 GRM [15-5500 keV MXT [0.3-10 keV] s_1 flux [erg cm⁻² 10 10⁻¹⁰ 10-11 10^{-12} 10² 10⁴ 10⁰ Time [s]
- 0.2-10 keV
- 64x64 arcmin²
- Loc. <13" within 5 min after the trigger for 50% of GRBs
- slew request: ~72 GRB/yr

Optical Light curves of long GRBs

The SVOM GRB sample

	Swift	Fermi	SVOM
Prompt	Poor	Excellent 8 keV -100 GeV	Very Good 4 keV - 5 MeV
Afterglow	Excellent	> 100 MeV for LAT GRBs	Excellent
Redshift	~1/3	Low fraction	~2/3

Physical mechanisms at work in GRBs

 Nature of GRB progenitors and central engines Acceleration & composition of the relativistic ejecta

Diversity of GRBs: event continuum following the collapse of a massive star

 Low-luminosity GRBs / X-ray rich GRBs / X-ray Flashes and their afterglow

GRB/SN connection

Short GRBs and the merger model

• GW association

GRBs as cosmological probes of the early Universe

The current SVOM GRB sample

199 astrophysical alerts (updated March 21, 2025)

- 80 Long GRBs (ECL 24)
- 15 Short GRBs (ECL1)
- 4 X-ray Rich GRBs (ECL 4)
- •

18 GRBs with redshift (ECL 10)!!!! 99 Gamma-Ray Bursts (87 GRM, 30 ECLAIRs of which 18 ECLAIRs+GRM) **100 Catalogued sources** (7 GRM, 95 ECLAIRs of which 2 ECLAIRs+GRM)

100 alerts related to catalogued X-ray sources (essentially in the galactic plane)

Credit: B. Cordier

Open questions in GRB science: progenitors, central engine and jet structure

- **Long/short dichotomy** recently challenged by observations of long GRBs from BNS mergers (e.g. GRB 230307A - long with KN discovered by JWST, Levan+23
- **Poorly explored families of GRB**, as XRR, XRF, low-luminosity, ultra-long -> GRBs in a more general scenario of explosive events, possible clues on secret ingredients needed to produce a GRB See M. Bugli's talk
- Long-lasting post-merger signals are the best direct detection to distinguish between the formation of a magnetar or a BH (e.g. Giacomazzo & Perna 2012, 2013; Dall'Osso et al., 2015). Hard to get it any time soon, but good prospects with 3rd generation of detectors, as the ET
- Our current understanding of the jet structure is essentially based on one event (GRB170817A): need for improvement in our capability to recognize orphan afterglows in optical (from ZTF to Rubin) and radio (SKA) **surveys** to get direct look to the jet structure and consequently of true rates for both short and long GRBs See M. Masson's talk

2040

THESEUS

Multi-messenger astronomy with SVOM

Ducoin et al., 2020, 2023

Ideal scenario: detection of the sGRB

→ ECLAIRs/GRM: large fov, independent trigger or offline search

Likely scenario: external alert received

→ MXT/VT: slew after the alert ToO-MM

→ Galaxy tiling strategy if the error box is larger than 1 deg²

Observational imprints of the magnetar

Free GRB emission

The kilonova emission associated to SGRBs

Observational imprints of the magnetar

The GRB emission:

- X-ray plateau
- Extended emission in SGRBs
- Pre- and post-cursors in the prompt emission

The kilonova emission associated to SGRBs

Direct detection of GWs from the magnetar

- Long-lasting post-merger signals are the best direct detection to distinguish⁼⁰ between the formation of a magnetar or a BH (e.g. Giacomazzo & Perna 2012, 2013; Dall'Osso et al., 2015)
- Searches in the LIGO/Virgo 0.5 data for short and intermediate duration signals in GW 170817/ GRB 170817A not conclusive (Abbott et al. 2017, 2019; Van Putten & Della Valle 2018)
- Hard to get it any time soon, but good prospects with 3rd generation of detectors, as the ET (Maggiore et al. 2020)

18

The future after Swift

- What happens after Swift, SVOM and EP? Possibly **THESEUS** (see L. Amati's talk), but we risk to have a • long gap. Cubesats might be an easy and "light" way to provide triggers (see e.g. HERMES)
- With the third generation interferometers (ET, CE), in 20 years were might have one GW signal for each short GRB. But who will observe those short GRBs?

How to cover the long gap? How to maintain the field alive?

Need to rethink how we do science in the field

- Take advantage of the big facilities and on the large number of transients that will be discovered. But how to classify transients (SOXS, see S. Campana's talk)?
- For a panchromatic view of transients, need to combine different facilities •
- Need for public data and alerts (both lesson learnt from Swift) •
- Need to develop need approaches to treat data (machine learning?) ullet

